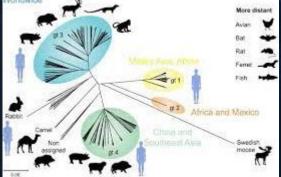
In The name of GOD



Hepatitis E Virus An underestimated virus Epidemiology, diagnosis, and treatment

Seyed Reza Mohebbi, ThD Medical Virology Research Institute for Gastroenterology and Liver Diseases Shahid Beheshti University of Medical Sciences sr.mohebbi@sbmu.ac.ir

Introduction

- Recently, viral infectious diseases have threatened global public health safety.
- Major incidences of these emerging and re emerging viral infectious diseases have a zoonotic link from arthropods, wild animals, domestic animals, and poultry.
- However, most of the emerging viral infectious diseases are caused by RNA viruses.
- Hepatitis E virus (HEV) is one such RNA virus causing the disease known as hepatitis E.

Introduction

- However, despite these alarming figures, hepatitis E is still grossly underestimated.
- There is poor awareness of the disease among physicians. Thus, routine check for the disease is rarely conducted in the hospitals in most parts of the world.
- Thereby leading to misdiagnosis and under diagnosis of hepatitis E.

Introduction

- There is also a paucity of research on the epidemiology of the disease, particularly in developed countries.
- This is due to the initial idea that hepatitis E is only endemic in the developing regions of the world.

 Review

 Hepatitis E: an emerging infection in developed countries

 Harry R Dalton, Richard Bendall, Samreen Ijaz, Malcolm Banks

 Marcet Infect Dis 2008; 8:698-709

 Hepatitis E is endemic in many developing countries where it causes substantial morbidity. In industrialised countries, it is considered rare, and largely confined to travellers returning from endemic areas. However, there is now a growing

 journal homepage: www.sciencedirect.com

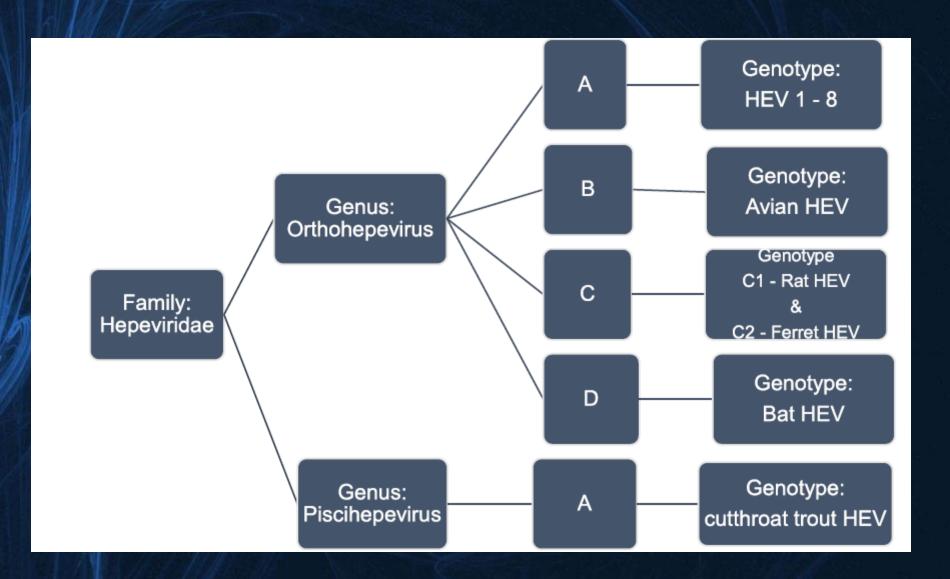
 Hepatitis E Virus: An emerging enigmatic and underestimated pathogen

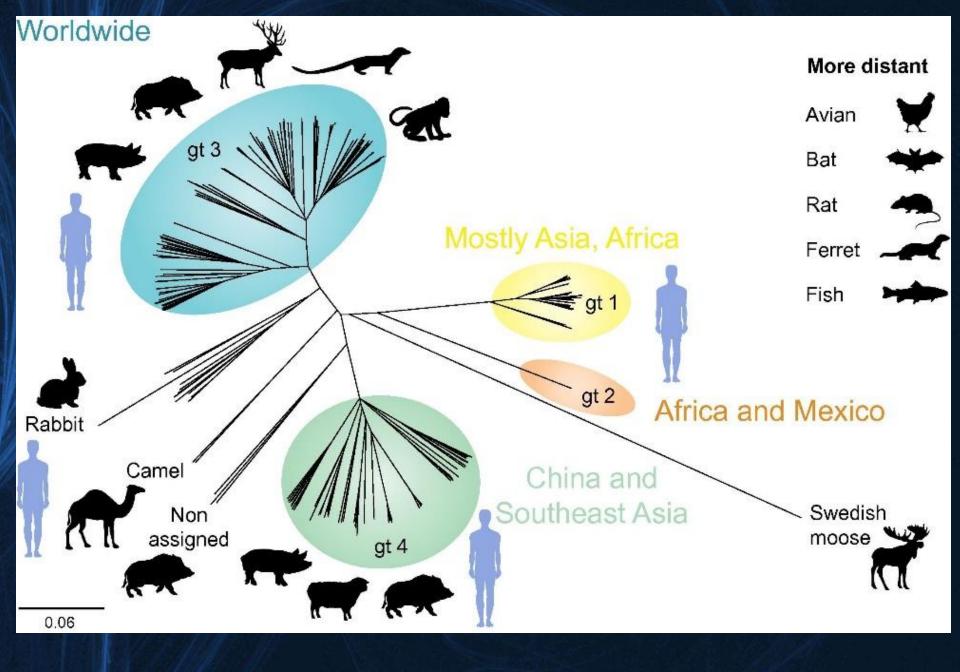
 Yakubu Egigogo Raji ^{a,c}, Ooi Peck Toung ^b, Niazlin Mohd Taib ^a, Zamberi Bin Sekawi ^{a,*}

^a Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia 1, Malaysia ^b Department of Veterinary Clinical Studies Faculty of Veterinary Medicine, Universiti Putra Malaysia 2, Malaysia ^c Faculty of Natural and Applied Sciences Ibrahim Badamasi Babangida University, Lapai, Nigeria

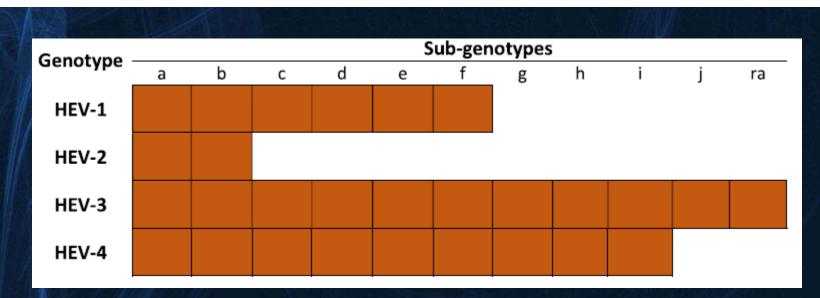
HEV history

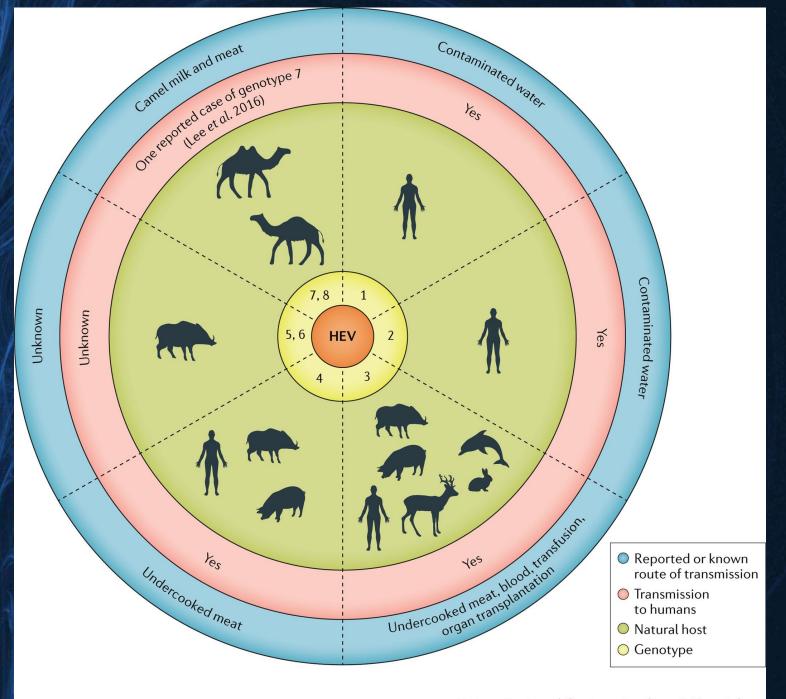
- A large outbreak of jaundice that occurred in New Delhi
- India between 1955 and 1956, was due to an enterically transmitted non-A non-B hepatitis
- In 1980, Khuroo suggested that the causative agent of an outbreak of non-A, non-B acute viral hepatitis that occurred in 1978 in the Kashmir valley of India was likely enterically transmitted



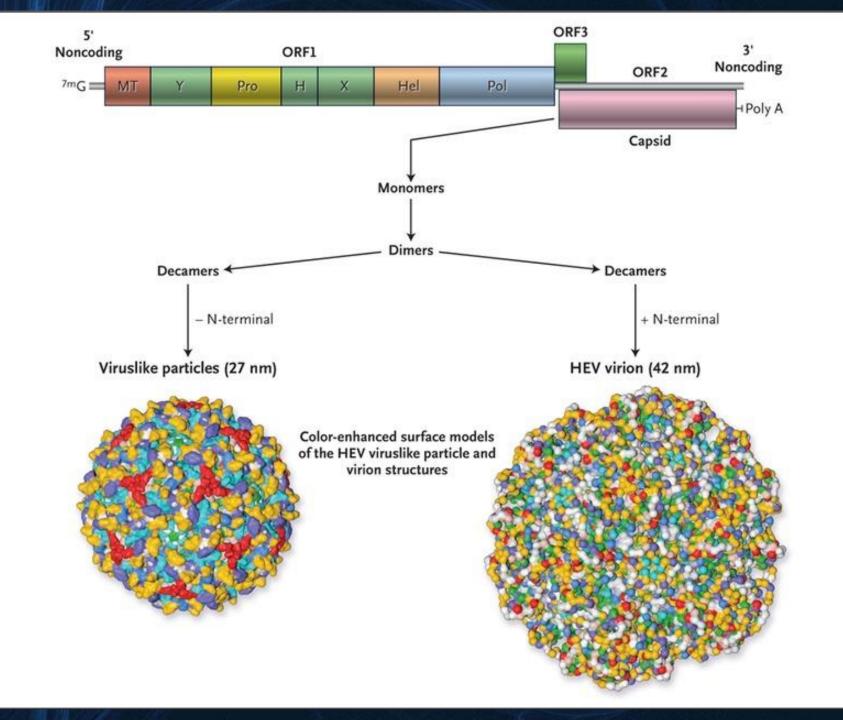


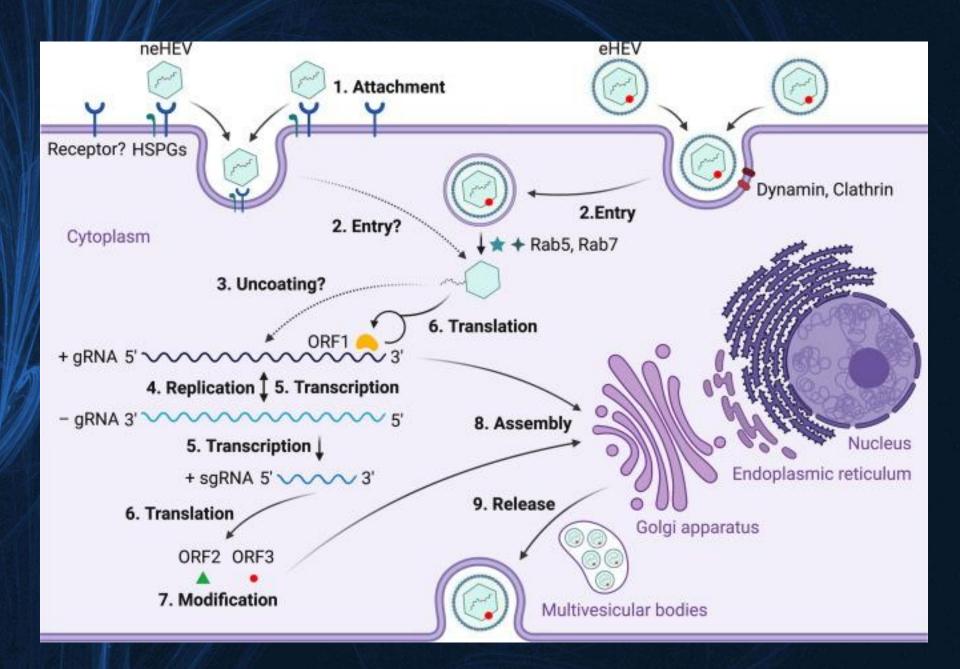
1980	Description of epidemic NANB hepatitis Khuroo MS
1981	Association of hepatitis E with pregnancy Khuroo et al
1983	Acute sporadic hepatitis and NANB hepatitis Khuroo et al
1983	Transmission/visualization of VLPs Balayan et al
1987	Serial animal passage and physicochemical properties of VLPs Bradley et al
1990	Molecular cloning and sequencing of viral genome Reyes et al
1992	ELISA for HEV antibodies Yarbough et al


HEV Taxonomy


- HEV is a highly diverse pathogen that is witnessing a constant discovery of different variants across different animals the world over.
- Initially classified as a member of the Caliciviridae (certain biophysical and morphological similarities)
- Removed from the Caliciviridae family and became unclassified
- In 2004 the ICTV, re-classified HEV as a solitary virus in the Hepevirus genus and a member of the Hepeviridae family
- Hepeviridae family into two genera: Orthohepevirus and Piscihepevirus based on the analysis of the existing sequence information

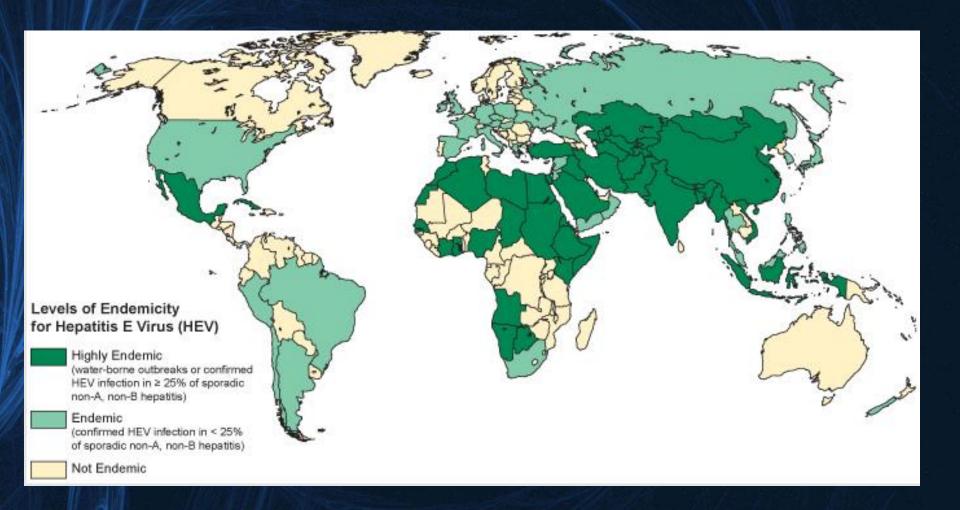
S/N	Genotype	Host	Region of Occurrence	Human Epidemic Disease	Human Sporadic Disease
1	1 (I)	Human (only)	West Africa, North Africa & Asia	Yes	Yes
2	2 (II)	Human (only)	Asia, Africa & Mexico	Yes	Yes
3	3 (III)	Human, Swine, & several other animals	North America, South America, Europe,	No	Yes
			Asia, & Africa		
4	4 (IV)	Human, Swine, & several other animals	Americas, Europe & Asia	No	Yes
5	5 (V)	Wild Boar (only)	Asia (Japan)	No	No
6	6 (VI)	Wild Boar (only)	Asia (Japan)	No	No
7	7 (VII)	Human & Camel	North Africa & Middle East	No	Yes
8	8 (VIII)	Human & Camel	North Africa & Middle East	No	Yes





Nature Reviews | Gastroenterology & Hepatology

Molecular virology


- A small non-enveloped virus with an approximate diameter of 27 34 nm.
- HEV is a single-stranded positive-sense RNA virus. The viral genome is capped (methylguanine) at the 5' end and polyadenylated at the 3' end. The virus is icosahedral in shape with a genome of 7.2 Kb in length
- The virus has three open reading frames (ORF) and three untranslated regions (UTR)



Epidemiology

- Global distribution with two separate
- Epidemiological patterns of distribution
- endemic disease regions: HEV1&2
- contaminated drinking water and poor sanitary hygiene
- sporadic disease: HEV3&4
- imported from travel to the endemic regions

Region					
Africa	Countries	Period	Number of Outbreaks	Number of Cases	References
	Algeria	1978-1987	2	> 300	(Coursaget, 1993; Grandadam, 2004)
	Central African Republic	2002-2005	2	> 1000	(Escribà, 2008; Goumba et al., 2011)
	Chad	1983-2004	2	> 1500	(van Cuyck-Gandré, 1997; World Health
					Organization, 2004)
	Djibouti	1992-1993	1	> 40	(Coursaget, 1998)
	Eritrea	1988 – 1989	1	> 750	(Tsega, 1991)
	Kenya	1991-2012	2	> 2,000	(Mast, 1994)
	Morocco	1994	1	> 75	(Benjelloun, 1997)
	Namibia	1983	1	> 200	(Isaäcson, 2000)
	Somalia	1988-1989	1	greater than11,000	(Bile, 1994; Mushahwar, 1993)
	South Sudan	2004-2013	2	> 7,700	(Pinoges, 2006; Thomson, 2013)
	Sudan	1984-2004	2	> 2,500	(McCarthy, 1994)
	Uganda	2007-2009	1	10,196	(Teshale, 2010)
Asia					
	Bangladesh	2008-2010	2	> 4,000	(Gurley, 2014; Harun-Or-Rashid, 2013)
	Burma (Myanmar)	1976-1989	3	20,510	(Gideon Informatics et al., 2020)
	China	1982-1988	9	> 119,280	(Zhuang, 1991)
	India	1955-1991	5	> 135,500	(Khuroo, 1980; Viswanathan, 1957; Naik, 1992;
					Jameel, 1992; Sreenivasan, 1978)
	Indonesia	1987-2004	4	greater than5,000	(World Health Organization, 2005;
					Sedyaningsih-Mamahit, 2002; Corwin, 1995)
	Nepal	1973-2006	4	> 14,000	(Labrique, 1999; Kane, 1984)
	Pakistan	1984-1994	6	> 4,000	(Labrique, 1999)
	Vietnam	1994	1	-	(Corwin, 1996)
Central America	a				
	Mexico	1986–1987	2	> 200	(Velazquez, 1990)

Sero-epidemiology

- Industrialised nations have lower (1%-52%) HEV seroprevalence when compared to the developing regions (4%-94%).
- Most of the seroprevalence studies were conducted among different groups including, the healthy general population, healthy blood donors, population with HIV, and those exposed to animals.
- Faber and colleagues conducted a study on the seroprevalence of HEV among adults in Germany. The study showed anti-HEV IgG positivity of 16.8% in the adult population
- Spain conducted among the general population, the HEV seroprevalence rate was 1.6%

Transactions of the Royal Society of Tropical Medicine and Hygiene 106 (2012) 528-531

Contents lists available at SciVerse ScienceDirect

Trepical Medicine & Hy

Transactions of the Royal Society of Tropical Medicine and Hygiene

journal homepage: http://www.elsevier.com/locate/trstmh

Seroepidemiology of hepatitis A and E virus infections in Tehran, Iran: a population based study

Seyed Reza Mohebbi^{a,*}, Mohammad Rostami Nejad^{a,**}, Seyed Mohammad Ebrahim Tahaei^a, Mohammad Amin Pourhoseingholi^a, Manijeh Habibi^a, Pedram Azimzadeh^a, Hamed Naghoosi^a, Peter Karayiannis^b, Mohammad Reza Zali^a

^a The Research Center for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, 7th floor, Taleghani Hospital, Yaman Ave., Velenjak, PO Box 19835–187, Tehran, Iran

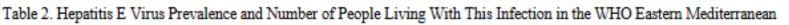
^b Department of Hepatology, Wright-Fleming Institute, Faculty of Medicine, Imperial College London, London, UK

REVIEW

CrossMark

Hepatitis E virus in the countries of the Middle East and North Africa region: an awareness of an infectious threat to blood safety

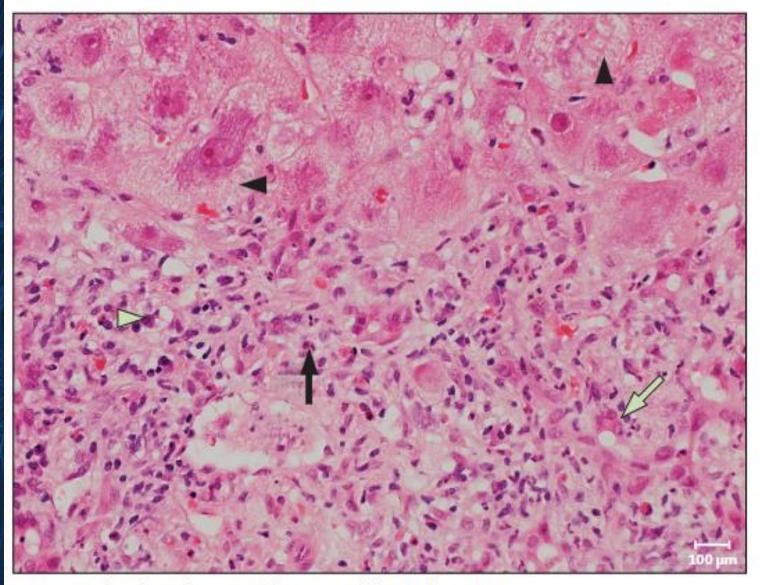
Soha Yazbek ¹ ·	Category/population studied	Number of participants	Mean age (age group)	Anti-HEV IgG (%)	Anti-HEV IgM (%)	HEV-RNA (%)	Refere
	Iran						
	Hemodialysis						
	Hemodialysis patients ^c	80	55.69 ± 14.70 (26-80)	6	_	-	[58]
	Healthy individuals (control)	276	51.73 ± 15.10 (24-77)	3	_	-	
	Kidney transplant patients ^c	-	_	30	_	-	[59]
SHUMP	Hemodialysis patients ^c	324	53.5 ± 15.1	7	_	-	[60]
	Others						
	Pregnant women	136	(14-39)	4	_	-	[61]
	General population of Mashhad, northeast of Iran	1582	29.06 ± 18.513 (<5 to ≥65)	14	_	-	[62]
THE REAL	HIV-infected patients	100	(34-43)	10	0	0	[63]
M = 1	Population based (Tehran)	551	41.28 ± 16.96 (1-83)	9	-	-	[64]
	Active health centers in Khorramabad (Western Iran)	400	36 (>20)	8	_	-	[65]
	Community based (Sari district)	1080	(2-25)	2	_	-	[66]
	Population based (Isfahan Province)	816	(6 to ≥50)	4	_		[67]
	Population based (Nahavand)	1824	34.7 ± 19.5 (6 to >70)	9	-	-	[68]
Course 1	Iraq						
	Outbreak						
	Al-Sadr city, Baghdad	270	-	21	-	-	[69]
	Al-Sadr city, Baghdad	268	(<10 to >40)	-	38	-	[70]
	Hepatitis						
	Patients with suspected acute viral hepatitis	2692	(<5 to >45)	-	2	-	[71]
	Others						
	Thai Troops Deployed with U.N. Peacekeeping Forces in Iraq	869	(21-55)	21	2	-	[72]
	Refugee Kurds from Iraq	637	24 ± 8.4 (0.5-55)	18	_	-	[73]
	Israel						
	Others						
	Travelers returning from tropical countries	4,970	37 ± 14.2	0.38	-	-	[74]
	Backpackers to Tropical Countries	105	22.3 ± 2.5 (<32)	0	-	-	[75]
	Saudi Arabia						
	Hepatitis						
	Patients with acute viral hepatitis	246	(<10 to >21)	-	13	-	[76]
	Hemodialysis						
	Hemodialysis patients ^c	83	39.0 ± 17.8 (7-82)	7	5	-	[77]
	Healthy controls	400	40.3 ± 18.5 (10-78)	11	0.30	-	



Microbial Pathogenesis Volume 110, September 2017, Pages 252-256

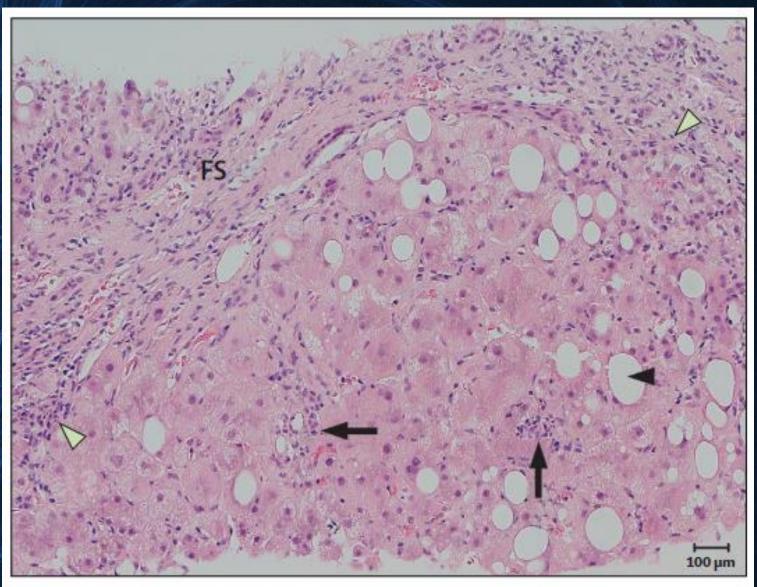
Hepatitis E virus seroprevalence rate among Eastern Mediterranean and middle eastern countries; A systematic review and pooled analysis

Mohammad Hadi Karbalaie Niya ^{a, b, c}, Mohammad Saeid Rezaee-Zavareh ^{a, b, d}, Alireza Ranaei ^{a, b, d}, Seyed Moayed Alavian ^{a, b} 名 図

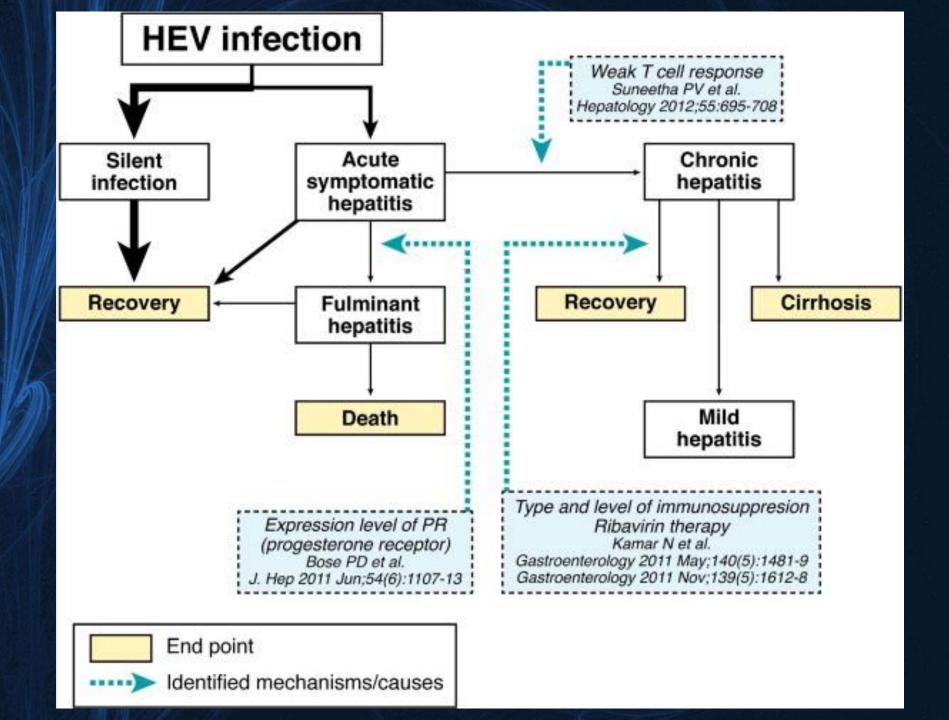


Region and Middle East*

	Preval	ence by HEV IgG Ab	Country	Estimated
Country Name	Studies N	IgG Positive N (%)	Country Population	IgG positive
	(patients)	(95% CI)	1 optiation	igo positive
Afghanistan	1 (540)	78 (14.44) (11.67-17.59)	32,530,000	4,697,332
Egypt	5 (1954)	395 (20.21) (18.47-22.03)	91,510,000	18,494,171
Iran	31 (16315)	1788 (10.95) (10.48-11.44)	79,110,000	8,662,545
Israel	2 (2145)	114 (5.31) (4.42-6.32)	8,463,000	449,385
Pakistan	1 (52)	28 (53.84) (40.39-66.88)	188,900,000	101,703,760
Saudi Arabia	4 (2312)	353 (15.26) (13.84-16.77)	31,540,000	4,813,004
Sudan	1 (80)	30 (37.50) (27.48-48.39)	40,230,000	15,086,250
Somalia	1 (145)	122 (84.13) (77.54-89.38)	10,790,000	9,077,627
Tunisia	5 (3903)	222 (5.68) (4.99-6.44)	11,110,000	631,048
Turkey	9 (3402)	501 (14.72) (13.56-15.94)	78,666,000	11,579,635
United Arab	1 (460)	02 (10 92) (16 41 22 61)	9,157,000	1 914 017
Emirates	1 (469)	93 (19.82) (16.41-23.61)	9,157,000	1,814,917
Yemen	1 (356)	38 (10.67) (7.78-14.19)	26,832,000	2,862,974
Middle East	51 (26953)	3282 (12.17) (11.79-12.57)	325,278,000	39,586,333
EMRO	53 (26626)	3147 (11.81) (11.43-12.21)	521,709,000	61,613,833
Total	62 (31673)	3762 (11.87) (11.52-12.23)	608,838,000	72,269,071


Pathogenesis

- The pathogenesis of hepatitis E is poorly understood and is largely based on the data from a few human cell culture systems and animal models
- The incubation period after viral entry into the host usually through the gastrointestinal tract is 14 days to about 10 weeks
- Viraemia, which often coincides with faecal HEV excretion appears few days before the onset of clinical symptoms and persists for 14 – 21 days thereafter
- Viral faecal excretion may persist for about 16 weeks (as shown in experimental animals) with a longer detection window than viremia


Figure 3: Liver histology of patient with acute autochthonous hepatitis E

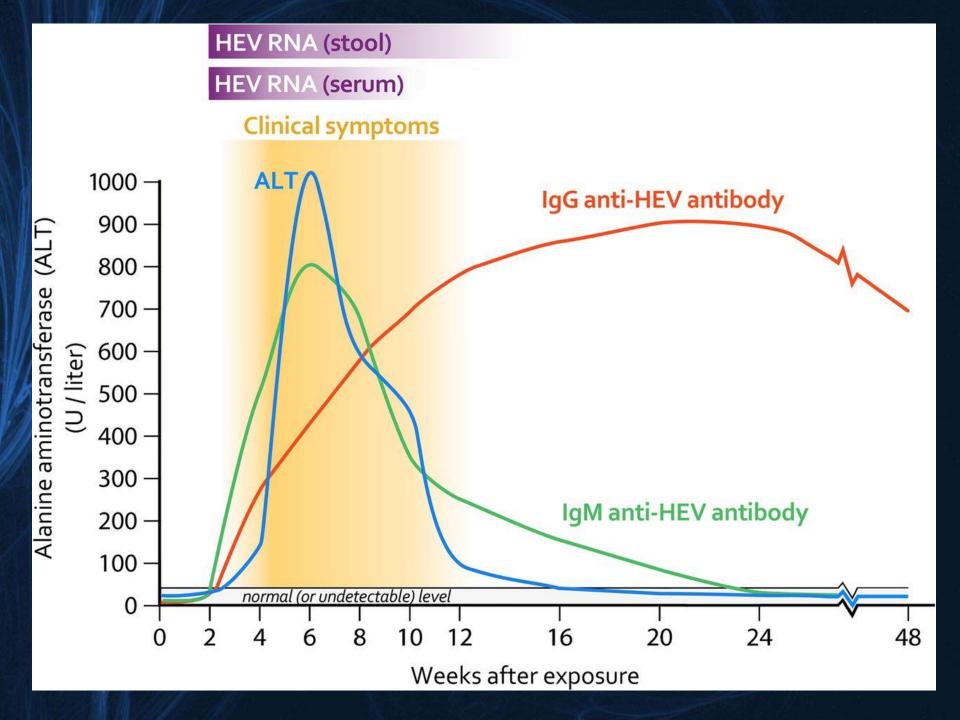
Section shows expansion of portal tracts by an intense portal mixed inflammatory infiltrate with occasional lymphoid aggregates and bile ductular proliferation (pale green arrow; haematoxylin and eosin stain). The inflammatory infiltrate is made up of lymphocytes, including plasma cells (pale green arrow head) and polymorphs, including eosinophils (black arrow). Periportal hepatocytes show some ballooning degeneration (black arrow head).

Figure 4: Liver biopsy in a patient with hepatitis E and ethanolic cirrhosis

Section shows fibrosis, nodule formation, and mixed inflammatory infiltration (lymphoplasmocytic, eosinophils, and neutrophils) along fibrous septae (FS) with extension into the parenchyma suggesting interface hepatitis (pale green arrow heads). Bile duct proliferation is seen with intrahepatic and intracanalicular bile stasis. The hepatocytes in the nodules show macrovascular fatty change (black arrow head) along with inflammatory cells and focal hepatocytic necrosis (black arrows). These features were consistent with an acute insult to an underlying cirrhotic process

Clinical features of hepatitis E

Most HEV infections have clinically silent course

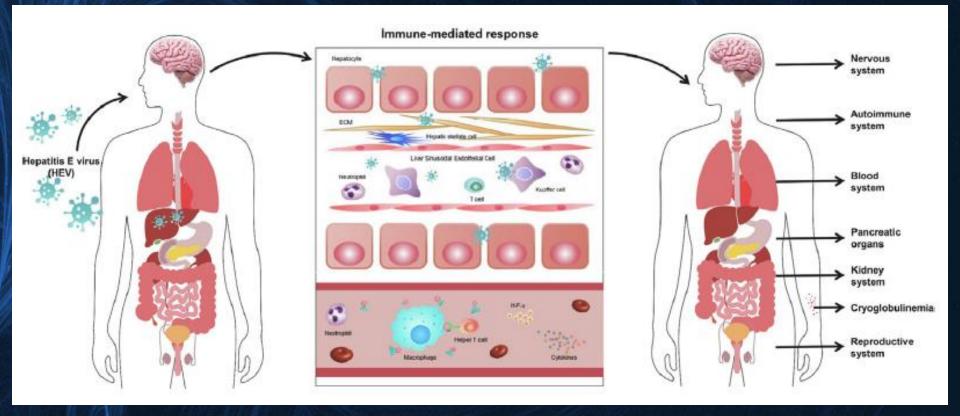

- Incubation period 3 8 weeks
- Prodromal phase
- Symptoms or jaundice
- Most cases are self-limited
- Case fatality rate

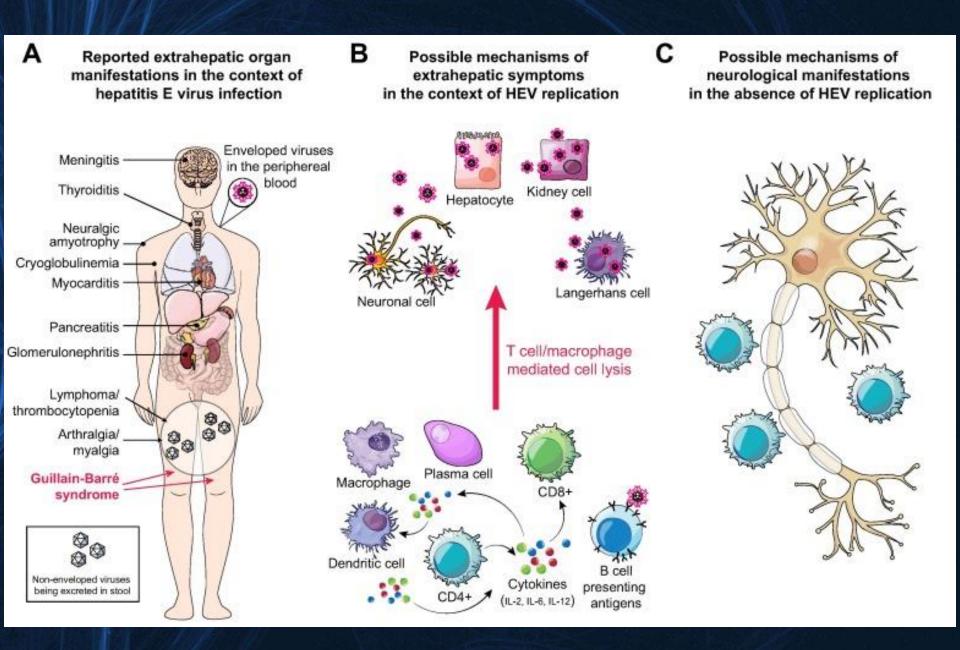
Short

Days to several weeks

0 – 10% 20% in pregnant women

Hoofnagle JH et al. N Engl J Med 2012 ; 367 : 1237 - 44 .

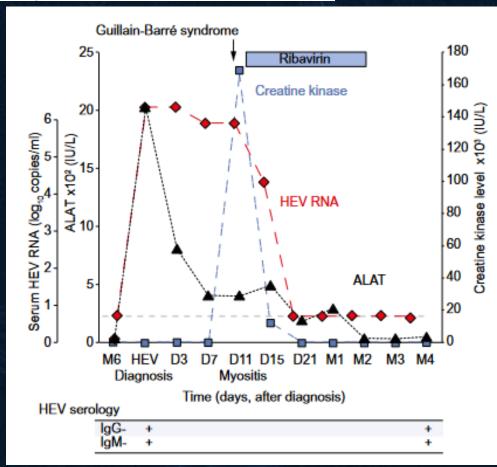

Clinical	presentation	of Acute	icteric	hepatitis.
----------	--------------	----------	---------	------------


S/N	Phases	Duration	Symptoms / Signs	Laboratory Markers
1	Prodromal	1 – 10 days	Low grade fever, Anorexia, Nausea (intense), Vomiting, Myalgia, Malaise	↑ ALT, AST, Serum bilirubin (Normal or Elevated)
2	Icteric	14 – 28 days (may continue for weeks and months leading to cholestasis)	Jaundice, Improved appetite, Declining prodrome symptoms, Tender hepatomegaly ± splenomegalyCholestatic symptoms; clay stool, dark urine, deep jaundice, intense pruritus, poor sleep, impaired work performance, poor quality of life	↓ ALT, AST, Serum bilirubin ↑
3	Convalescence		*Recovery and disappearance of symptoms	Returns to Normal

*Recovery usually spontaneous and complete. If recovery does not occur, it may progress to acute liver failure. ALT, alanine aminotransferase; AST, aspartate aminotransferase; \uparrow , increase; \downarrow , decrease.

	Value		
Characteristic	HAV	HEV	
Incubation period (median no. of days)	30	40	
Dose-dependent severity	No	Yes	
Mortality (%)	0.1-2.1	0.2–4	
Mortality in pregnancy	No difference	Up to 25%	
Chronic disease	No	Yes (HEV3, HEV4)	
Developed countries	Epidemic, endemic	Sporadic, travel associated (HEV1, HEV2)	
		Sporadic, endemic (HEV3, HEV4)	
Developing countries	High seropositivity, rare clinical disease	Epidemic, endemic	
Age group	Adolescents, young adults	Adolescents, young adults (HEV1, HEV2)	
		Older adults (HEV3, HEV4)	
Sex	No difference	Males more commonly affected	

Letters to the Editor


SEASL OF HE STUDY HEPATOLOGY

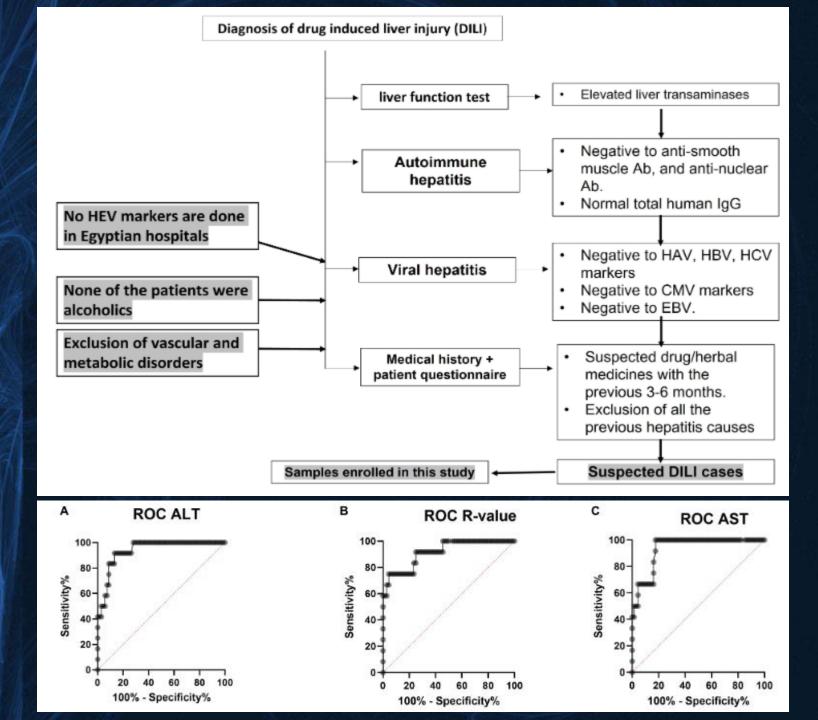
Hepatitis E virus-induced severe myositis

To the Editor:

Genotype 3 hepatitis E virus (HEV3) infection is responsible for self-limiting acute hepatitis, chronic HEV3 infection leading to cirrhosis in immunosuppressed patients, and several extra-hepatic manifestations, i.e., neurological symptoms, kidney injury, and severe thrombocytopenia [1–5]. Ribavirin therapy has been shown to be an efficient therapy for chronic HEV infection [6,7]. Herein, we report on a first case of Guillain–Barré syndrome

merular filtration rate (40 ml/min)]. Rapidly after the initiation of both therapies, CK and ALT levels decreased and returned to within the normal range, respectively, 3 and 30 days later. Serum HEV RNA became undetectable by day 15, but ribavirin therapy was continued for 3 months as initially scheduled. Two months after ribavirin was stopped, serum HEV RNA was still negative. Fifteen days after HEV clearance, progressive recovery of mobility was noted.

ORIGINAL RESEARCH published: 08 October 2021 doi: 10.3389/fmicb.2021.737486


The Unmet Needs of Hepatitis E Virus Diagnosis in Suspected Drug-Induced Liver Injury in Limited Resource Setting

Mohamed A. El-Mokhtar^{1,2}, Haidi Karam-Allah Ramadan^{3*}, Marwa M. Thabet⁴, Alaa S. Abd-Elkader⁴, Magdy Fouad⁵, Mohammad M. Sallam⁶, Elsayed A. Elgohary⁶, Amer Ali Abd El-Hafeez^{7,8}, Mona Embarek Mohamed¹ and Ibrahim M. Sayed^{1*}

¹ Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Asyut, Egypt, ² Microbiology and Immunology Department, Faculty of Pharmacy, Sphinx University, Asyut, Egypt, ³ Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Asyut, Egypt, ⁴ Department of Clinical pathology, Faculty

Results: Out of 80 samples, 12 samples were positive for anti-HEV IgM and anti-HEV IgG, and HEV RNA was detected in seven samples. The median viral load was 3.46×10^3 IU/ml, and the isolated viruses belonged to HEV genotype 1. The level of liver enzymes such as alanine transaminase (ALT) and aspartate transaminase (AST), but not alkaline phosphatase (ALP), was significantly higher in HEV confirmed cases than in non-HEV confirmed cases. We identified a plasma ALT level of at least 415.5 U/L and AST level of at least 332 U/L; ALT/ALP ratio of at least 5.08 could be used as a guide for the patients diagnosed as DILI to be tested for HEV infection. The previous liver function parameters showed high sensitivity and good specificity.

Conclusion: Hepatitis E virus was detected in suspected DILI cases. The diagnosis of DILI is not secure until HEV testing is done. Liver function parameters can be used as a guide for HEV testing in suspected DILI cases in countries with limited resources.

Received: 24 August 2021 Accepted: 1 November 2021

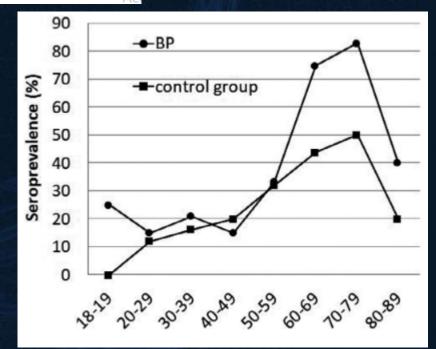
DOI: 10.1111/ene.15175

ORIGINAL ARTICLE

european journal of neurology

Hepatitis E virus and Bell's palsy

Miriam Fritz-Weltin¹ | Lisa Niedermeier¹ | Estelle Frommherz¹ | Nora Isenmann¹ | Dominique Endres³ | Marcus Panning⁴ | Benjamin Berger¹

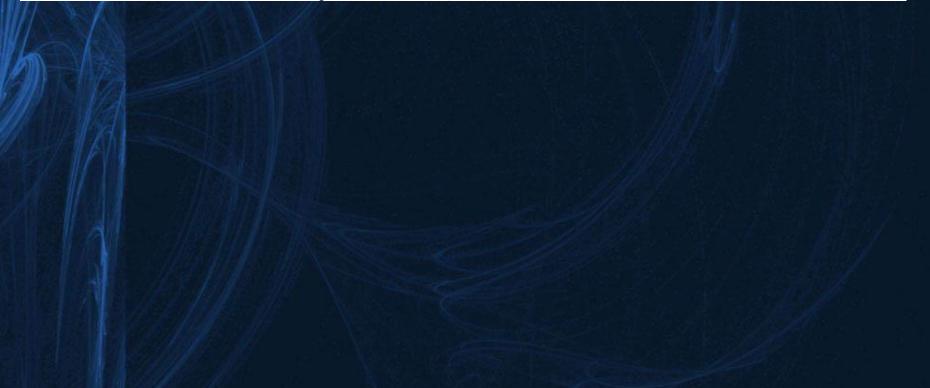

Benedikt Csernalabics² | Tobias Boettler² | Christoph Neumann-Haefelin² |

Abstract

¹Clinic of Neurology and Neurophysiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany

²Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany

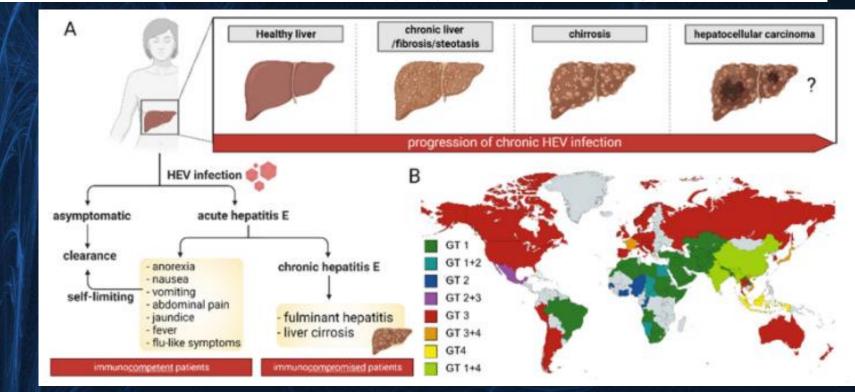
Background and purpose: Acute hepatitis E virus (HEV) infections have been associated with various neurological disorders, including individual cases with Bell's palsy. Nonetheless, systematic studies in the latter are lacking. Therefore, this retrospective study systematically screened a cohort of patients with Bell's palsy for an acute HEV infection.

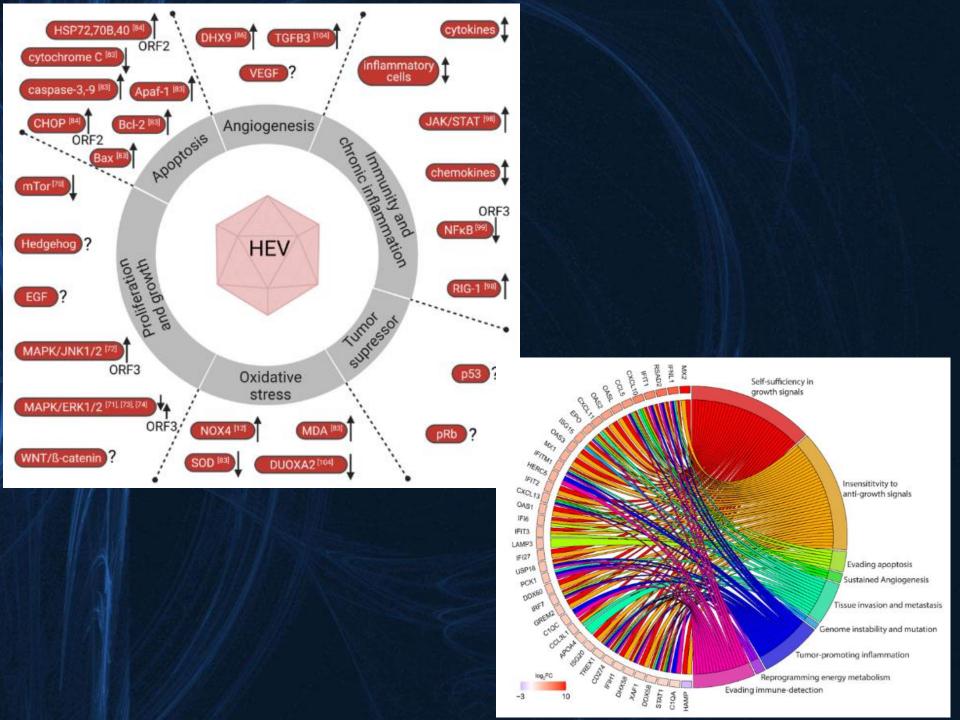


Article Genetic Diversity of Hepatitis E Virus Type 3 in Switzerland—From Stable to Table

Isabelle Vonlanthen-Specker¹, Roger Stephan², Xaver Sidler³, Dominik Moor⁴, Cornel Fraefel¹, and Claudia Bachofen^{1,*}

¹ Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; isabelle.specker@outlook.com (I.V.-S.); cornel.fraefel@uzh.ch (C.F.)




Review

Beyond the Usual Suspects: Hepatitis E Virus and Its Implications in Hepatocellular Carcinoma

Mara Klöhn ^{1,†}, Jil Alexandra Schrader ^{1,†}, Yannick Brüggemann ¹, Daniel Todt ^{1,2} and Eike Steinmann ^{1,3,*}

¹ Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany; Mara.Kloehn@ruhr-uni-bochum.de (M.K.); Jil.Schrader@ruhr-uni-bochum.de (J.A.S.);

Brief report

المر PDF

Hepatitis E virus infection in hematopoietic stem cell transplant recipients: a systematic review and meta-analysis

Angkawipa Trongtorsak¹, Natapat Chaisidhivej², Kritika Yadav¹, D Jinah Kim³, Charat Thongprayoon⁴, Wisit Cheungpasitporn⁴, Panupong Hansrivijit³ Correspondence to Dr Panupong Hansrivijit, Department of Internal Medicine, UPMC Pinnacle Harrisburg, Harrisburg, Pennsylvania, USA; hansrivijitp@upmc.edu

Abstract

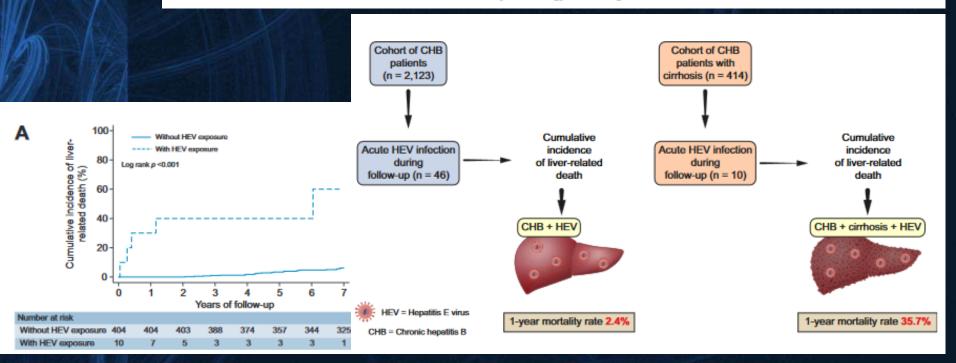
Although most patients with hepatitis E virus (HEV) infection are asymptomatic or have mild symptoms, its infection is generally underdiagnosed and overlooked. In immunocompromised patients, HEV infection can lead to acute liver failure and death. However, the clinical evidence of HEV infection in hematopoietic stem cell transplant (HSCT) recipients is scarce; thus, we conducted this systematic review and meta-analysis to assess the prevalence of HEV infection in this population. We searched

Choi et al. BMC Infectious Diseases (2022) 22:62 https://doi.org/10.1186/s12879-022-07050-w **BMC Infectious Diseases**

RESEARCH

Open Access

Acute hepatitis E virus superinfection increases mortality in patients with cirrhosis

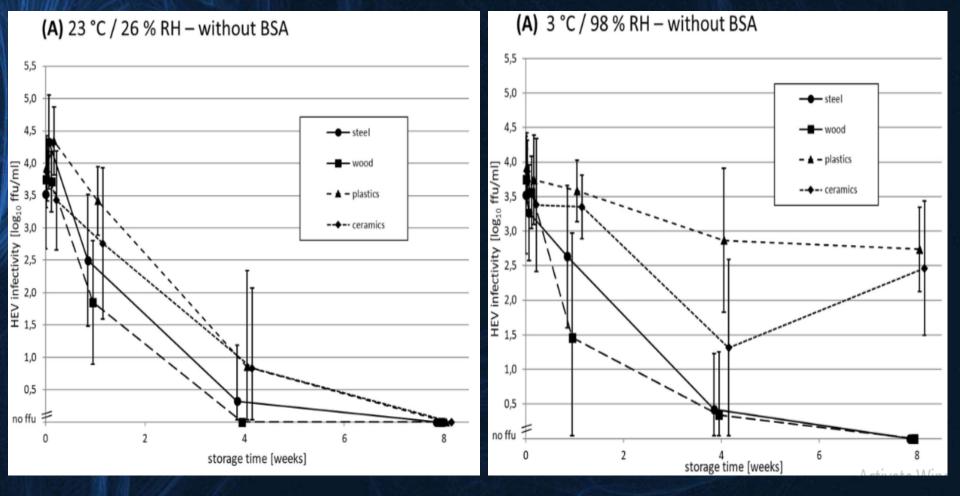

Jung Woo Choi^{1,2†}, Ho Jin Son^{1,3†}, Sang Soo Lee^{1,2,3*}, Hankyu Jeon^{1,3}, Jin-Kyu Cho⁴, Hee Jin Kim^{1,2,3}, Ra Ri Cha^{1,2,3}, Jae Min Lee^{1,2,3}, Hyun Jin Kim^{1,2,3}, Woon Tae Jung^{1,2} and Ok-Jae Lee^{1,2}

Research Article Viral Hepatitis JOURNAL OF HEPATOLOGY

HEV superinfection accelerates disease progression in patients with chronic HBV infection and increases mortality in those with cirrhosis

Tai-Chung Tseng^{1,2}, Chun-Jen Liu^{1,2,4}, Crystal T. Chang⁷, Tung-Hung Su^{1,2}, Wan-Ting Yang², Cheng-Hsueh Tsai^{1,2}, Chi-Ling Chen⁴, Hung-Chih Yang^{1,4,5}, Chen-Hua Liu^{1,2}, Pei-Jer Chen^{1,2,4}, Ding-Shinn Chen^{1,2,4,6}, Jia-Horng Kao^{1,2,3,4,*}

¹Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; ²Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan; ³Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; ⁴Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine Taipei, Taiwan; ⁵Department of Microbiology, National Taiwan University College of Medicine Taipei, Taiwan; ⁶Genomics Research Center, Academia Sinica, Taiwan; ⁷Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA


ORIGINAL PAPER

Stability of Hepatitis E Virus After Drying on Different Surfaces

Alexander Wolff¹ · Taras Günther¹ · Reimar Johne¹

Received: 26 November 2021 / Accepted: 12 January 2022 © The Author(s) 2022

Chronic HEV infection

- Chronic hepatitis E is defined as persistent HEV replication demonstrable by detecting HEV RNA in serum or stool three to six months following the original infection
- Chronic HEV is believed to be exclusive to immunosuppressed and immunocompromised patients. The immunosuppressed patients are those on immunosuppressive
- agents due to either solid organ transplant (SOT) or those on chemotherapy for haematological malignancies

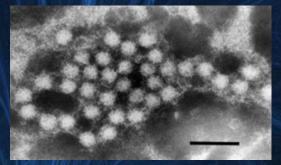
Laboratory diagnosis

- Numerous methods are available for detecting HEV both direct and indirect.
- These methods include immune electron microscopy (IEM), fluorescent antibody blocking assay, Enzyme Immunoassay (EIA), immunoblot (IB), immunochromatography, and reverse –transcription polymerase chain reaction (RT-PCR)
- ELISA HEV antibodies of IgM and IgG class
- The specificity and sensitivity of these different assays range from about 40 to more than 90% for different genotypes and geographic locations

Treatment

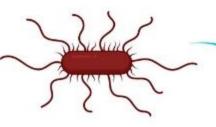
- Hepatitis E virus infection treatment depends on the outcome of the infection. For acute viral hepatitis in immunocompetent individuals, viral clearance is usually spontaneous. Thus, this group of patients may require only supportive and symptomatic treatment.
- However, in the case of severe HEV infection in immunocompetent persons, treatment with ribavirin at 1200 mg/day for 21 days is recommended
- Although, for acute liver failure by HEV infection in pregnancy, the major form of treatment is supportive intensive care (ribavirin has a teratogenic effect)

Treatment

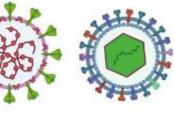

- It is also recommended that patients with acute HEV infection awaiting transplant or undergoing haemodialysis should be treated.
- A short course (10 days to 3 months) of ribavirin (at 200 mg 1000 mg/day) should be given before the transplant (Péron, 2011).
- While pegylated interferon-alpha (at 135 mg/week) for three months is used for the haemodialysis patients.

Vaccine

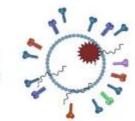
- Good basic hygiene although effective in the prevention of hepatitis E, is not all-encompassing. Since it does not suffice for other sources of transmission beyond waterborne and foodborne routes.
- Thus, the safest and most effective means of HEV prevention and control should be through vaccination. Of the numerous vaccine candidates, two were outstanding and underwent human clinical trials


Vaccine

- A baculovirus expressed 56 KDa protein and an E. coli expressed HEV 239 protein.
- The 56 KDa protein though yet to be licenced, has gone through both phase I and II human clinical trials. On the other hand, the HEV 239 vaccine has its efficacy evaluated in phase III double – blind, a randomized clinical survey conducted in China. The vaccine has the following advantages:
- cross protection against other HEV genotypes.
- Potential for rapid control vaccination during epidemics.
- Hence, the vaccine was licenced for use in China in 2012 under the brand name Hecolin. However, the vaccine is yet to be approved by any other country aside China.



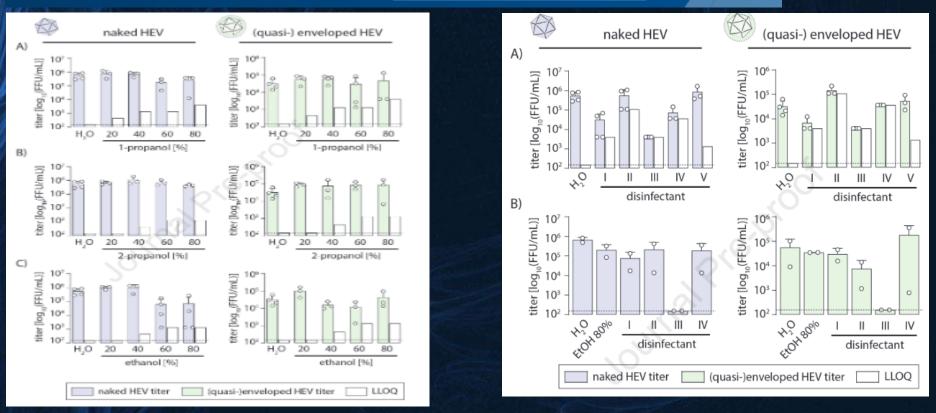
Pathogenic bacteria



Hand sanitizer & Hand hygiene

Inactivation of bacteria by lipid membrane lysis and release of intracellular content Inactivation of virus by lipid membrane lysis and release of intracellular content

FULL LENGTH ARTICLE | ARTICLES IN PRESS


PDF [12 MB]

Hepatitis E virus is highly resistant to alcohol-based disinfectants

Patrick Behrendt 🙁 # 🖂 • Martina Friesland # • Jan-Erik Wißmann • ... Heiner Wedemeyer • Daniel Todt

Eike Steinmann <u>∧</u> ⊡ • Show all authors • Show footnotes

Open Access • Published: January 24, 2022 • DOI: https://doi.org/10.1016/j.jhep.2022.01.006

Conclusion

- Hepatitis E virus as a pathogen has evolved since its discovery.
- The pathogen is now known for causing a disease that is globally distributed with an increased public health challenge
- The risk factors for HEV infection have also increased due to its multiple means of transmission. Of interest are zoonotic transmission, blood-borne transmission, and to a lesser extent vertical transmission.
- As a result, more populations are at risk of HEV infection now than ever.

Thanks for your attention

Pray For Peace We are all one